Shock wave driven by a phased implosion
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In this paper the theory of an axially phased radial implosion of a channel is developed. When
the phase velocity of the implosion exceeds the sound velocity inside the channel, a planar
shock wave traveling along the channel axis can develop. For the energy of the implosion
system in the appropriate range, the theory predicts a stable steady-state flow configuration.
The effect of the phased implosion is for the channel wall to form a nozzle that travels along
the channel axis. The flow behind the axial shock is well described by the equations for nozzle
flow with an additional dynamical degree of freedom for the shape of the wall. Experiments
presented here verify the theoretical predictions. The numerical simulations show the
formation of the axial shock during start-up and the approach to steady state to be in good
agreement with experiment and theory. A potential application of the axially phased implosion

is the design of a super shock tube.

1. INTRODUCTION

An axially phased implosion of a channel can act as a
*“virtual” piston to drive a planar shock wave in a working
fluid within the channel. The implosion pinches off the chan-
nel while the axial phasing causes the constricted region to
travel along the channel as depicted in Fig. 1. Energy is con-
centrated in shock compressed fluid within the channel by
collecting the energy from the implosion along the length of
the channel. This concept was introduced in Refs. 1 and 2,
and used with a high explosive drive for the phased implo-
sion to develop a high powered gas gun.

The formation of an axial shock wave using a virtual
piston requires that the axial phase velocity exceeds the
sound speed of the working fluid. Furthermore, the implo-
sion must be strong enough to collapse the channel wall to
the axis. When the wall does not reach the axis the supersoni-
cally phased implosion acts as a leaky piston or peristaltic
pump, which nevertheless can drive a shock along the chan-
nel.

In this paper, we focus on the case in which the flow
through the leaky piston reaches steady state. In a frame
comoving with the phased implosion, the flow in the channel
reduces to the flow in a nozzle that is well described by the
one-dimensional equations for duct flow. However, unlike in
the standard duct flow, the shape of the duct itself becomes a
dynamical degree of freedom.

Phased implosions can be used in shock tube applica-
tions to reach extreme pressures and energy densities. With
high explosives driving the implosion, a very strong axial
shock wave can be generated. The implosion alsc serves to
confine the high pressure that cannot be contained by mate-
rial strength. Such a system can be viewed as a super shock
tube.

Our goal in this paper is threefold: to describe the theory
of a steady-state axial shock driven by a phased implosion, to
present the experiments that verify this theory, and to show
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numerical calculations that simulate the initial development
of the axial shock and the approach to steady state.

We begin our analysis in Sec. II by formulating the equa-
tions that model the flow in the working fluid inside the
channel. The model equations are equivalent to those for
one-dimensional fluid flow in a duct where the cross-section-
al area is another dynamical variable and varies in both dis-
tance and time. The cross-sectional area is in part deter-
mined by an external traveling pressure pulse, which serves
to drive the phased implosion and is applied to the outside of
the channel wall.

The steady-state solution is characterized by a shock
traveling at the phase velocity followed by an isentropic noz-
zle flow. An important feature of nozzle flow is that the fluid
is sonic at the nozzle throat thereby decoupling the converg-
ing nozzle region from the flow behind (see Fig. 2). The
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FIG. 1. Sketch of the time sequence of events in a phased channel implosion
that acts as a "*virtual” piston.
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FIG. 2. Sketch of steady-state nozzle formed by phased implosion.

shape of the nozzle and the relative position of the axial
shock adjust to the profile and strength of the applied pres-
sure pulse. For the systems we consider, this axial shock is
near the onset of the applied pressure pulse. Considerations
of the energy balance between the work done by the applied
pressure and the energy flow through the back of the nozzle
show that the steady-state flow is stable.

Section I1I describes a simple explosively driven phased
implosion experiment in which a nozzle flow approaching
steady state actually occurs. The experimental apparatus
consists of a cylindrical metal tube filled with n-hexane and
surrounded by high explosives as shown in Fig. 3. A detona-
tion wave travels along the axial direction of the tube and
drives the phased implosion. Measurement of the shock
planarity with a smear camera and the shape of the shock
tube from a flash x ray confirm that a planar axial shock was
formed and propagated.

Two-dimensional numerical calculations simulating the
experiment are presented in Sec. IV. The calculations show
the details of the formation of the axial shock and the ap-
proach to an asymptotic steady state. The results compare
well with the experimental data but indicate that the experi-
ment had not quite reached the steady state. The numerical
calculation, extended over a longer distance of run, con-
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FIG. 3. Sketch of the explosively driven phased implosion experiment.
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verged very accurately to the steady-state nozzle solution.
This strongly indicates that the steady-state nozzle solution
is the stable fixed point for fluid flow driven by phased im-
plosions, provided that the energy balance allows the shock
to ride near the onset of the pressure pulse.

In Sec. V we summarize the major points and discuss
our results and potential applications of super shock tubes.

Il. THEORETICAL MODEL OF THE AXIAL SHOCK

From the general description of three-dimensional hy-
drodynamical equations we develop a one-dimensional ap-
proximation of the fluid flow in a cylindrical shock tube driv-
en by a supersonically phased pressure pulse. We begin by
introducing the notation. Let r and z be the radial and axial
coordinates, and ¢ the time. We denote the ambient condi- ‘
tions with the subscript 0. The flow of the working fluid and
the wall material of the shock tube is described by the com-
pressible fluid equations

d.,p + V+(pu) =0, ()
d,(pu) + V-(pueou) + VP =0, (2)
d,(p& ) + V-(p&u) + V-(Pu) =0, (3

where p is the mass density, u is the particle velocity,
% =1lu|’> + E is the total specific energy, E is the specific
internal energy, Pis the pressure, and ¥ = 1/p is the specific
volume. We use # and v for the radial and axial component of
u and .S for the specific entropy. The working fluid and wall
are distinguished by their equation of state P(V,E).

The implosion system is modeled by a boundary condi-
tion; an applied pressure pulse on the outside of the shock
tube wall traveling at a constant axial phase velocity v,,

P.(zt) =P, (1—2z/v,). (4)

The applied pressure profile P, (1) is P, for t <0, rises
abruptly at 7 = 0, and then falls monotonically to P, for z > 0.
The point z = v, is referred to as the onset of the applied ;
pressure pulse. For this paper the phase velocity is super-
sonic relative to the ambient state of the working fluid,
Up > Co-

A. Qualitative description

To define a framework for our analysis and to justify our
later approximations we give a short, qualitative description
of the flow generated by a phased implosion of a cylindrical
shock tube. The description follows the flow from the forma-
tion to the asymptotic steady-state propagation of an axial
shock in the working fluid within the shock tube.

The wall motion at the start of the phased implosion
creates a shock in the working fluid oblique to the axis. Due
to the cylindrical convergence, the slope dr/dz of the shock
front steepens and the reflection on axis results in-a Mach
configuration (see Fig. 4). As the wall continues to implode,
the radial compression of the fluid creates an axial pressure
gradient that leads to a compression wave behind the Mach
configuration. The interaction of the compression wave with
the Mach configuration strengthens the Mach stem and
causes the triple point to move radially outward. The Mach
stem grows in radial extent and becomes the axial shock.
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F1G. 4. Sketch of the time sequence of events leading to the formation of an
axial shock.

During this initial phase, the wall implodes inward by a
large fraction of the tube radius. Due to the low initial pres-
sure in the working fluid, most of the energy supplied by the
applied pressure pulse is converted into kinetic energy of the
wall. The wall inertia and the applied pressure drive the wall
inward until the radial compression of the working fluid
leads to a sufficiently high internal pressure to decelerate
and then reverse the wall motion. If the applied pressure
pulse supplies sufficient energy, then the compression of the
fluid will be large enough for its characteristic velocity to
exceed the phase velocity, ¢ + v> v, . This is a necessary cri-
terion for the compression wave to catch up with and
strengthen the Mach configuration. Otherwise, when the ap-
plied pressure pulse is weak, the compression wave remains
behind the phased implosion and the resulting flow pattern
consists merely of a weak oblique shock and its reflections off
the axis and wall.

When the speed of the compression wave exceeds the
phase velocity, the pressure behind the axial shock increases.
This increases the work the wall does on the fluid and further
amplifies the fluid pressure until it is limited by the energy
available from the applied pressure. The higher fluid pres-
sure decreases the net force across the wall and thus de-
creases its inward acceleration. Once the axial shock propa-
gates near the onset of the applied pressure pulse, the inward
motion of the wall is substantially smaller than during for-
mation of the axial shock.

‘ The energy from the applied pressure pulse does Pd¥V

work on the fluid. During startup Pis small and dV is large.
Once an axial shock has formed, P is large and d¥ is small.
The balance between the energy supplied by the applied
pressure pulse and the energy absorbed by the working fluid
causes the axial shock to asymptotically approach a steady
state. This process is described next.
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B. One-dimensional model

Two approximations are needed to obtain a simple one-
dimensional model of the phased implosion of a shock tube.
The first neglects the axial motion and internal structure of
the wall; the second neglects the radial velocity and radial
dependence of variables within the working fluid. Both ap-
proximations require that the phase velocity be much larger
than the wall velocity. The experiments and numerical cal-
culations presented later confirm that these approximations
are valid for a wide range of conditions.

1. Thin wall approximation

When the shock tube wall is sufficiently thin, the transit
time for a radial signal in the wall is short compared to the
transit time for a radial signal in the working fluid. There-
fore, to analyze the fluid flow inside the shock tube, we can
approximate the shock tube wall with a mass layer and char-
acterize the wall with its mass per unit length o and its radius
R(z,t). Radial shocks and internal energy in the wall are
neglected. We also assume that P, is much larger than the
yield strength of the wall and neglect its material strength.

With these approximations, the motion of the shock
tube wall is governed by Newton's law

5

a—aam;- R(z,t) =27R (z,t) [P(R,z,t) — P, (2,0) ]. (5)
;2

Implicit in this equation is that the force on the wall is direct-
ed radially, which requires |dR /dz|<1. This condition is
valid when o is large enough for the wall velocity to remain
small relative to the phase velocity. Once the axial shock is
formed this condition on ¢ is easily satisfied because the
pressure difference across the wall tends to be small.

2. Reduction to one dimension

When the ratio of the radial wall velocity to the axial
phase velocity is small, then |dR /dz| <1 and the sound speed
behind the axial shock will be large compared to the wall
velocity. Under these conditions, it is a good approximation
to neglect the radial velocity and the radial dependence of
the flow inside the shock tube, see e.g., Ref. 3. Equations
(1)~(3) for the fluid flow reduce to the equations for one-
dimensional (1-D) flow in a duct of variable and time-de-
pendent cross-sectional area, 4 = 7R *:

d,(pA) + 3. (pAv) =0, (6)
3, (pAv) + 3. (pAv* + PA) = PJ_A, (7)
d,(pA¥%) + 3. (pA% v+ PAv) = — PJ A. (8)

The variation of 4 with z retains the most important aspects
to the two-dimensional flow. The cross-sectional area is cou-
pled to the fluid pressure inside the duct by the wall equation
of motion, Eq. (5). Consequently, the shape of the duct is a
dynamical degree of freedom.

Equations (5)~(8) represent the one-dimensional mod-
el for the phased implosion of the shock tube. There are
several important points to note on the structure of the mod-
el equations. The right-hand side of Egs. (7) and (8) are
source terms for the 1-D axial fluid flow. Equation (5) al-
lows for a discontinuity in the radial wall acceleration, but
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the radial wall velocity as well as R and A4 are always contin-
vous. Furthermore, from the left-hand side of Egs. (6)—(8)
the mass, momentum, and energy densities and their fluxes
are all proportional to 4. Therefore 4 and the source terms
do not effect the shock jump relations for the fluid flow. For
the full fluid dynamics equations, Egs. (1)—(3), the applied
pressure is a boundary condition. But for the 1-D model the
applied pressure enters Eq. (5) as asource term. Because the
source is moving, v,, has the effect of an additional character-
istic velocity.

The one-dimensional model equations do not accurately
describe the formation of the axial shock because radial ef-
fects and, in particular, oblique radial shocks are important.
However, after the axial shock has formed, the fluid behind
it is on a high adiabat compared to the ambient conditions.
The sound speed in the fluid is comparable to the phase ve-
locity and hence large compared to the wali velocity. Conse-
quently, the limited wall motion results in weak radial waves
that have only a small effect on the fluid adiabat, and the
model equations accurately describe the flow behind the axi-
al shock.

Even after the axial shock has formed, the 1-D model
equations (6)-(8) only apply to the region behind the
shock. We approximate the fluid state in front of the axial
shock by the ambient state. This neglects the radial structure
that forms in front of the Mach stem when it rides behind the
onset of the pressure pulse. In front of the Mach stem, sound
velocities are small compared to the wall velocity and the
radial waves are strong perturbations of the ambient state.
However, the radial waves are confined to a narrow bound-
ary layer near the wall if the axial shock is not riding too far
behind the onset of the pressure pulse. Outside the boundary
layer, the material in front of the shock remains in its am-
bient state.

This is in contrast to the precompression that would
occur if Egs. (6)-(8) were applied in front of the axial
shock. This compression would change the initial state and
hence the state behind the shock. For the same shock veloc-
ity, the flow rate and pressure behind the axial sheck would
be too high. Our formulation of the 1-D model gives the
same pressure for the axial shock as for the Mach stem in the
true flow. We are in effect, neglecting the flow between the
wall and contact behind the Mach configuration (see Fig.
4). Hence this “boundary layer” region must be small for
Egs. (6)-(8) to be a good appreximation and the applied
pressure pulse must supply sufficient energy such that the
radius R, of the shock tube at the axial shock front is close to
the initial radius, R, =R,

3. Steady-state nozzle flow

We refer to the reference frame moving with the phase
velocity v, as the comoving frame. At steady state in the
comoving frame, the axial shock is stationary and the shock
tube wall has the shape of a converging-diverging nozzle.
This configuration is sketched in Fig. 5. The radial flow can
be neglected for a slender nozzle for which the length is long
compared to the radius, and the ratio of the minimum radius
to the initial radius is not too small. We are mainly interested
in the flow in the converging section of the nozzle, 1.e., be-
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FIG. 5. Sketch of steady-state phased implosion in the comoving frame. (a)
Shock behind the onset of pressure pulse. (b) Shock ahead of the onset of
pressure pulse.

tween the entrance point at which the cross-sectional area
first changes and the nozzle throat at which the cross-sec-
tional area is minimum. The entrance point corresponds to
the first motion of the wall; the onset of the applied pressure
pulse or the position of the axial shock, whichever is ahead.
When the applied pressure behind the nozzle throat is low
compared to the axial shock pressure, i.e., P, falls off suffi-
ciently fast, the flow in the converging section of the nozzle is
unsupported from behind and is sonic at the nozzle throat.
Thus the flow into the throat decouples from the flow be-
hind. We denote the nozzle entrance by z, and the nozzle
throat by z,.

The fluid equations (6)—(8) are invariant under Gali-
lean transformations and have the same form in the comov-
ing frame as in the lab frame. At steady state, in the comov-
ing frame the wall is stationary and the source term on the
right-hand side of Eq. (8) vanishes. Its effect is accounted
for by the change in the kinetic energy under the Galilean
transformation.

In the comoving frame at steady state, Egs. (6)—(8)
applied to the flow behind the axial shock reduce to the alge-
braic equations for nozzle flow, see e.g., Ref. 4. Let
g = v, — v be the velocity in the comoving nozzle frame:

pgA = const, flow rate,

ig° + E+ PV =const, Bernoulli’s law,

S = const, isentropic flow.

The constants for the nozzle flow equations are deter-
mined by the state immediately behind the stationary shock
with the particle velocity ahead of the shock equal in magni-
tude to the phase velocity v,. Variables describing this state
are denoted by the subscript s. In particular, z, is the position
of the shock and R, is the radius of the shock tube at the
shock front. The solution to the algebraic equations deter-
mines the flow variables p, g, E, and P as functions of the
cross-sectional area ratio 4 /4, where A, = 7R 7 is the area
of the shock front. We denote this nozzle flow solution with
the subscript V.
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For asteady nozzle flow the area must always be above a
critical value 4, determined by the fluid state and area at the
nozzle entrance. There are two solutions to the nozzle flow
equations for 4 > 4, corresponding to subsonic and super-
sonic flow (see Fig. 6). At the critical area the two branches
meet in a sonic point of the flow. Because the flow behind a
shock is subsonic, the flow between the axial shock and the
nozzle throat corresponds to the subsonic branch of the noz-
zle flow in which P decreases with decreasing 4. When the
flow through the nozzle is transonic, the flow behind the
nozzle throat is supersonic and corresponds to the branch of
the nozzle flow in which P decreases with increasing 4.

In the comoving frame, the steady-state shape of the
wall depends on 7’”. The wall shape R(z) at t = 0 is deter-
mined by solving a pair of ordinary differential equations
obtained by substituting the nozzle flow solution into Eq.

(5). Note, in steady state d, = — v,d,. Let U= 3, R be the
radial wall velocity. Equation (5) can then be expressed as
dR
Vy—r= — Uv (9)
‘dz
av(,,—ai—U—: — 27R [P(z) ~1~’u(———z—)], (10a)
dz Uy
where
Py, forz, <z,

P(z) ={P¥™A4(2)/4,),
PR™(A(2)/4,),

and 4 =7R".

The boundary conditions are as follows. At the nozzle
entrance the initial wall radius is R(z,) = R,, and the initial
wall velocity is U(z,) = 0. The nozzle throat is defined to
occur at the minimum radius, U(z,) = Oand R(z,) < R,.In
addition, we require the flow at the nozzle to be sonic, i.c.,
A(z,) = A, . We emphasize that the sonic condition de-
pends on the equation of state and the nozzle flow equations
but is independent of the applied pressure pulse.

The position of the axial shock z, provides the extra

for z,<z<z,, (10b)

forz<z,
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FIG. 6. Pressure versus area for an ideal gas with y = 1.
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degree of freedom to satisfy the sonic condition at the nozzle
throat. Thus z, is similar to an eigenvalue. In Appendix A we
show that there exists a solution and that it is unique. Physi-
cally, the position of the axial shock within the nozzle de-
pends on the energy delivered to the working fluid by the
applied pressure pulse. There are two cases. In the under-
driven case, low external energy, the nozzle entrance coin-
cides with the onset of P, , z, <zyand R < R,, and the shock
front is inside the converging section of the nozzle. In the
overdriven case, large external energy, the nozzle entrance
coincides with the shock front, which is ahead of the applied
pressure pulse, R, = R, and z, = z,, and the nozzle shape
diverges outward before converging inward.

It is interesting to note that at steady state for z, <z,
dP /dz <0 behind the shock front. For the transient during
the formation of the axial shock, dP /dz > 0 behind the Mach
stem.

C. Example of polytropic ideal gas

The purpose of this section is to illustrate the ideas de-
veloped in the previous section in the context of a concrete
example. We begin by choosing an ideal polytropic equation
of state for the working fluid,

P(VE)=(y—1E/V. (1

In Sec. I1 C 1 we parametrize the nozzle flow in terms of the
variable V. In Sec. IT C 2 we present an explicit analytic solu-
tion for the nozzle flow, which implies a particular form of
the applied pressure pulse.

1. The nozzle solution

When the strong-shock jump conditions apply
(v4 >¢o), the flow in the nozzle can be determined analyti-
cally. The state behind a stationary strong shock with up-
stream particle velocity v, is

Vi=[ly—1D/(y+ D1V,
P = [2/(y + D] pyvi,

E =[2/(y+ 1)’]v,
g.=[(y—D/(y+ Dly,.

(12)

The algebraic nozzle flow equations with this state as initial
condition have the following solution parametrized by V-

P=(V/V)'P,

E=V/V)' " 'E,

g={1—[4/(y + DNV /)7 '},
A= (q,V/qV,)A,.

(13)

The sonic point is determined by the condition

¢ = yPV = ¢*. Solving for V' we obtain

Ve/Ve=2p/(y 4+ )]V 0, (14)
The other variables at the critical state for the nozzle flow are
given by
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P./P = [(y+ 1)/2y]7 ",
E,/E, = (y+ 1)/2y,

(q_*)z — (_Ci) _r=1
U, v, ¥+ 1

A* (7/_1)!/2( 27/ )l/(r—l)
:1—- ¥+ 1 Y+ 1 '

K

(15)

From Eq. (13), P, E, and g vary monotonically with V" while
A4 is double valued. The subsonic branch corresponds to
[2/(y+DIVT"VV, <V<V,, and the supersonic
branchto V, < V< . As 4— o, the subsonic branch goes
to ¢ = 0 and finite P, while the supersonic branch goes to
p =0, P=0, and finite g. On each branch Eq. (13) can
easily be inverted numerically to give the variables as func-
tion of the area ratio 4 /A4, .

We note for steady-state propagation with the axial
shock at the nozzle entrance, the wall implodes inward only
a small fraction of the radius; for yp=3
(Ro —R,)/Ry =1—(4,/4,)" = 17%.

2. An analytic solution

Using Egs. (12)—(15) we can construct a nontrivial ex-
act steady-state solution for the 1-D model of the phased
implosion, Egs. (6)-(10), as follows. The solution is para-
metrized by V. The axial shock is at the nozzle entrance and
the interval ¥, <V< ¥, corresponds to the subsonic region.
We take the converging section of the nozzle to be the inter-
val — L<z<0.

The solution is determined by specifying a function for
the axial coordinate z( V). For example, let us choose

z2(Vy= —L[(V=V)/(V,—=V)]". (16)

Since R(V) is already given by Eq. (13) the nozzle shape is
determined. The wall velocity is determined by Eq. (9),

dR (dz\ "'
*dv (dV) ' an
The function z(¥) is chosen such that dz/dV — « as V- ¥,
in order for U to vanish at the nozzle entrance. The applied
pressure pulse is determined by Eq. (10a),

_ o
Pa(- Z(V))zP(V) SR . -ﬁg(—di) NGE)
v, 27R(V) dV \dV

By straightforward differentiation, and with P, R, and ¢ giv-
enby Egs. (12) and (13), Uand P, may be obtained analyti-
cally. The expressions are cumbersome to write out but easi-
ly evaluated numerically. In Fig. 7 this solution for P(z),
P,(— z/v,), and R(z) is shown for a particular choice of
parameters v, 0, R,, L, 7, V,,, and P, This solution ex-
tends into the supersonic region corresponding to V> V.
The qualitative behavior of the variables in the general case
is the same as for this example. This has been observed in
experiments and numerical simulations (see Secs. III and
Iv).

UV)= —vu

D. The energy balance

Next we consider the energy balance in the lab frame for
the steady-state fluid flow in the converging section of the
nozzle formed by the phased implosion. This is equivalent to
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FIG. 7. Example of the exact steady-state noz.zle solution (R, =1, L = 5,
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deriving the analog of the Hugoniot jump conditions across
the nozzle.

At steady state, either the axial coordinate, wall radius,
or time may be used as the independent variable to parame-
trize the flow. The relation of these variables is most easily
expressed in differential form,

dz= —v,dt= — (v,/U)dR. (19)

Conservation of energy for the fluid may be expressed
by integrating Eq. (8) across the length of the nozzle from z,
to z,. With substitutions using Eq. (19), this can be ex-
pressed as

[P() (Vy —vy) (%U(z) + Ey) + Py }A()
A,

~ [P = v (10 + By = P la, =u, | Paa

4,

(20)

where the subscripts O and ¢ denote the nozzle entrance and
throat, respectively.

Similarly, conservation of energy for the wall may be
expressed by multiplying Eq. (10a) by U then integrating
across the nozzle. By substituting Eq. (19) and U = Qat the
nozzle entrance and throat we obtain

A, A,
f PdA :j P, dA. (21)
4, A,

This equation results from neglecting the internal energy
and the thickness of the wall. All the work done by the ap-
plied pressure on the wall is transferred to the fluid.

The average external work per unit length done on the
shock tube is given by

EL‘\! EL\\K ’41(‘
— = = f P, dA. (22)
U, length A,
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Combining Egs. (20)-(22) we obtain the energy balance
equation

[PO(UO - Ux/))(%u(z) + Ey) +P()U0]Ao
— [PI(U: —U¢)(%U$+E,)wP,U,]A,:EC“. (23)

The interpretation of this equation is that the rate of external
work done on the nozzle is equal to the rate energy is lost out
the back of the nozzle by the fluid flow.

Analogs of the Hugoniot jump conditions across the
nozzle can also be derived for mass and momentum. The
nozzle jump condition for mass differs from the shock jump
condition as a result of the change in area across the nozzle.
For the momentum, the nozzle jump condition is also affect-
ed by a source term, the right-hand side of Eq. (7). Thus the
applied pressure pulse supplies both energy and momentum
to the fluid. The nozzle jump conditions reduce to the shock
jump conditions when P, vanishes and 4, = 4,.

When the working fluid is described by an ideal polytro-
pic equation of state the energy balance equation can be sim-
plified. Assuming the strong shock limit, the incoming ener-
gy flux is small and the first term on the left-hand side of Eq.
(23) may be neglected. Substituting Eq. (15) for the quanti-
ties at the nozzle throat into Eq. (23) and simplifying we
obtain an expression for the external energy per unit length,

E_| Y 17272 ,
eyt {1_(7 1) ]P()UQA,\-‘ (24)
length 2y ¥+ 1

By comparison a piston driving a shock with the same shock
velocity v, would supply an energy,

E on/length = [2/(y + 1) ]p,v3A4,,. (25)

Thus a phased implosion requires a smaller amount of power
todrive a shock at a fixed velocity than a piston; for example,
when ¥ =3 and 4, = 4, then E,, /E .., = 27%. This is
because the amount of fluid in a nozzle is fixed while the
amount of fluid shocked by a piston increases. The phased
implosion acts like a leaky piston or peristaltic pump to drive
the axial shock. The advantage of the peristaltic pump over
the virtual piston configuration is that a higher shock veloc-
ity can be achieved for a given power of the driving system.

E. Stability considerations
1. Stability of model flow

We consider the stability of the flow for the 1-D model
equations of the phased implosion, Egs. (5)-(8). In the co-
moving frame, the steady-state flow is the same as for a su-
personic fluid entering a converging—diverging nozzle. The
stationary axial shock is in the converging region of the noz-
zle for the undriven case, and at the entrance to a diverging
region of the nozzle in the overdriven case. We contrast the
stability of the flow generated by the phased implosion with
the flow through a fixed nozzle.

A stability analysis of Eqgs. (6)—(8) for a fixed nozzle
shape, d,4 = 0, shows that a stationary shock is stable in a
diverging section and unstable in a converging region of the
nozzle.”’ Superficially this would suggest that the axial
shock is unstable in the underdriven case. However, there
are several significant differences that prevent the standard
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nozzle stability analysis from applying to the axial shock
formed by a phased implosion.

A critical difference between the channel flow generated
by the phased implosion and the nozzle flow in the standard
stability analysis is that the wall radius is an extra degree of
freedom [Eq. (5)]. The shape of the nozzle is not fixed but
adjusts to the flow inside. Another important difference is
the boundary conditions for the nozzle flow. The upstream
boundary is the ambient condition in front of the axial shock.
For the axial shock inside the nozzle, this is motivated by the
2-D effects that give rise to oblique shocks and a Mach con-
figuration. Because the flow is supersonic at the nozzle en-
trance, the state in front of the Mach stem 1s undisturbed and
is the same as the incoming flow. For the axial shock near the
nozzle entrance, the error in the mass flow is not significant.

In contrast, the standard boundary condition for the
fixed nozzle stability analysis is a fixed inflow state at the
nozzle entrance. This results in a radial precompression in
front of the axial shock when the shock is in the converging
section of the nozzle. An important destabilizing aspect of
the precompression is that a higher shock pressure is needed
for a stationary shock as it is moved deeper into the nozzle.
The standard analysis also uses a fixed state as a downstream
boundary condition. This is inappropriate for the phased
implosion because of the interaction of the moving wall with
the fluid flow; the appropriate downstream boundary is a
sonic condition at the nozzle throat.

A shock in a converging section of a fixed nozzle either
falls back and out the throat, or moves forward past the
nozzle entrance. The analysis in Appendix A shows that the
model equations for the phased implosion have a unique
steady-state solution. The proof is based on the balance
between then energy needed to propagate the flow ahead of
the nozzle throat and the external energy supplied by the
applied pressure pulse. The sign of the slope of the energy
difference as a function of the axial shock position indicates
that the steady-state flow formed by the phased implosion is
stable.

Suppose the position of the axial shock is perturbed rela-
tive to the steady-state solution. If the shock were to move
ahead then the applied pressure pulse would have insuffi-
cient energy to implode the wall down to the critical radius
for steady-state nozzle flow. In addition, when P, falls off
sufficiently fast the flow is unsupported from behind and a
rarefaction from the nozzle throat would overtake the shock
and pull it back. On the other hand, if the shock were to
move back then the applied pressure pulse would have suffi-
cient energy to implode the wall past the critical radius. The
flow in the nozzle would choke, and a compression wave
formed at the nozzle throat would overtake the shock and
push it forward. This is the 1-D version of the transient that
initially forms the axial shock. Thus the interaction of the
shock with the wall motion has a strong stabilizing effect on
the fluid flow in the nozzle.

Similar arguments indicate that the steady state is also
stable in the overdriven case in which the axial shock is
ahead of the onset of the applied pressure pulse. The energy
balance and uniqueness of the steady-state solution play an
important role in the stability argument. We note that in
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some circumstances another quasisteady asymptotic solu-
tion is possible. Suppose the working fluid density is suffi-
ciently low, e.g., a gas, such that the axial shock pressure is
below the yield strength of the wall and the nozzle flow is
overdriven. A flow can occur in which the axial shock veloc-
ity is greater than the phase velocity. In this case the wall
does not expand outward and the working fluid does not lose
energy when the axial shock gets ahead of the applied pres-
sure pulse. A quasisteady solution can be constructed. It
consists of a steady nozzle flow preceded by a constant state
region between the shock front and the onset of the pressure
pulse that grows linearly with time. As the shock velocity
increases above the phase velocity, the fluid will be on a high-
er adiabat and the constants for the algebraic flow equations
will increase. Thus the wall can implode further toward the
axis. The limiting case for the quasisteady solutions occurs
when the particle velocity behind the shock is equal to the
phase velocity and corresponds to the *virtual” piston con-
cept previously considered in Refs. 1 and 2.

The stability argument discussed here is supported by
the numerical calculations presented in Sec. V. A math-
ematically rigorous analysis would involve linearizing Egs.
(5)—(8) about the steady-state solution and computing the
growth rate of the normal modes. The linearized problem
contains a free boundary, the position of the axial shock. The
stability analysis would be very similar to that of a 1-D de-
tonation wave. This is discussed further in Sec. V.

2. Stability under higher-dimensional perturbations

There is another aspect of fluid stability that is of con-
cern for the phased implosion. This is the combined Ray-
leigh-Taylor and Kelvin~Helmholtz instability of the fluid—
wall interface. For a rapidly imploding wall the yield
strength of the wall is exceeded and one cannot rely on mate-
rial strength to stabilize the interface. In the steady-state
configuration the high pressure behind the axial shock limits
the inward travel of the wall to a small fraction of the tube
radius. The small radial convergence ratio results in a mini-
mal growth of Rayleigh~Taylor instability. The growth of
the Kelvin—-Helmholtz instability starts at the nozzle en-
trance. The aspect ratio of the steady-state nozzle, the ratio
of length to diameter, is an important factor. For an aspect
ratio of order unity, the growth of a Kelvin—Helmholtz in-
stability within the nozzle is small. In effect, the interface
instability is minimal because the nozzle wall is continually
fed new material and the old perturbed material is swept past
the nozzle throat where it has no effect on the axial shock.
The transit time for a fluid particle to pass through the noz-
zle sets the relevant time scale for the growth of instabilities.
When the aspect ratio of the nozzle is small, there is insuffi-
cient time for the instability to develop to a significant ampli-
tude.

Another 2-D instability involves the boundary layer
that occurs when R, < R,,. In this case the axial shock corre-
sponds to the Mach stem of a Mach configuration where the
stem extends nearly to the wall of the shock tube (see Fig. 4).
Behind the Mach stem the flow is subsonic, while in the
boundary layer behind the reflected shock of the Mach con-
figuration the flow is supersonic. Across the contact between
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the two regions, there is a velocity shear or vortex sheet that
is subject to Kelvin—Helmholtz instability. Again, for small
aspect ratios of the nozzle, the instabilities are swept out of
the nozzle before significant growth occurs. We now show
that, inside the nozzle, the vorticity across the contact sur-
face actually decreases. The vorticity in the vortex sheet
points in the azimuthal direction because the flow is sym-
metric about the cylindrical axis;

VXu = b, (26)

where 0 is a unit vector in the azimuthal direction. The rate
of change of the vorticity is given by

(3, +uV)w= — (Vwao + (1/0°)VpXVP.  (27)

For the steady-state nozzle flow behind the axial shock, the
source term Vp X VP decreases the vorticity along the con-
tact. This decrease and the supersonic flow in the boundary
layer have a stabilizing effect on the contact surface.

The subsonic flow behind the Mach stem and the super-
sonic flow in the boundary follow the two different branches
of the nozzle flow equations. In order to stay in pressure
equilibrium across the contact, the cross-sectional area of
the boundary layer increases while the cross-sectional area
of the flow behind the axial shock decreases. If the shock
rides close to the onset of the pressure pulse then the bound-
ary layer is small and this effect is not significant.

The effect of these surface instabilities is to add dissipa-
tion to the nozzle flow from either mixing of the boundary
layer or wall friction. This can be compensated for by in-
creasing the energy supplied by the applied pressure, other-
wise, the shock will ride further back in the nozzle than is
predicted by the zero dissipation limit.

. EXPLOSIVELY DRIVEN PHASED IMPLOSION
EXPERIMENTS

We briefly describe a simple experiment in which an
axial shock generated by a phased implosion is observed and
measured. The experiment consists of a shock tube inside a
cylinder of high explosive (HE). The HE is initiated at the
end of the cylinder. The axially propagating detonation wave
provides the applied pressure pulse that drives the phased
implosion of the shock tube. A detailed description of this
experiment and additional experiments are given in Refs. 8
and 9.

A drawing of the experiment (E-4933) is shown in Fig.
8. The working portion of the shock tube is 6.746 cm long by
0.856cmi.d. (in. o.d. witha 20 mil wall) for an aspect ratio
of L /D = 7.9. Itissurrounded to an outer diameter of 5.0cm
by PBX-9501, a high explosive that has a Chapman-Jouguet
(CJ) detonation velocity of v, = 0.88 cm/usec and a CJ
pressure of 370 kbar. The working fluid in the shock tube is
n-hexane, p, = 0.657 g/cm”. The experiment is designed to
be close to the energy limit for propagating an axial shock at
the nozzle entrance, Eq. (23). With a lower working fluid
density or additional HE energy, the axial shock would get
ahead of the detonation front and send a precursor wave into
the HE, unnecessarily complicating the analysis of the ex-
periment. ;

The shape of the axial shock front and the detonation
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FIG. 8. Scale drawing of the hexane phased implosion experiment.

front are measured with the reflection-change/flying-flasher
technique.'? This technique enables the measurement of ar-
rival times and shock strengths as follows. A thin air gap is
sandwiched between a flyer plate and a transparent Lucite
block. This assembly is placed at the end of the shock tube.
The specially roughened free surface of the flyer plate is illu-
minated with a flash lamp and observed with a smear cam-
era. The detonation wave in the HE or the axial shock in the
hexane sends a transmitted shock into the flyer plate. The
shock arriving at the surface changes the surface roughness,
thereby changing the reflectance of the surface. Therefore
the first change in intensity of the light marks the arrival of
the shock at the free surface. Subsequently, the air gap is
compressed and heated to incandescence by the motion of
the flyer plate. Finally, the Lucite becomes opaque when it is
hit by the flyer plate. Thus the impact of the flyer plate on the
Lucite is marked by a bright flash. From the time difference
between the reflectance change and the flash we can calcu-
late the flyer plate velocity. The strength of the incident wave
on the flyer plate is determined from the material equations
of state by computing the shock impedance match back-
wards from the flyer plate velocity.

The time of the first motion of the free surface of the
fiyer plate and the arrival time of the flyer plate at the Lucite
flasher as a function of radius are shown in Fig. 9. The inner
portion of the flyer plate is driven by the axial shock in the
hexane whereas the outer portion is driven by the detonation
wave in the HE. The simultaneity of the reflection change of
the light signal implies that the shock front in the hexane is
flat to + 3 nsec, (v, At /D = 4 0.003) to within 0.05 cm of
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the tube wall where it is delayed by about 6 nsec. Away from
the boundaries, the detonation wave is also flat. At the shock
tube wall, it lags by ~ 30 nsec because of a rarefaction caused
by the inward motion of the wall.

The signal from the axial shock arrives at the free sur-
face of the fiyer plate 30 nsec later than that of the bulk of the
detonation wave. Assuming the incident wave speed is the
detonation velocity, which for the hexane we justify below, it
follows from the impedance match to the flyer plate that the
detonation wave arrived at the front surface of the flyer plate
130 nsec earlier and the axial shock 117 nsec earlier. There-
fore, at the end of the shock tube, the axial shock is 43 nsec
behind the bulk of the detonation wave. This corresponds to
an axial distance of 0.04 cm.

We note that the transit time for a radial signal from the
detonation wave to the inside of the shock tube wall is 90
nsec. Thus even neglecting the delay of the detonation wave
on the outside of the shock tube wall, the axial shock is ahead
of the signal from the applied pressure pulse at the inside of
the shock tube. The apparent delay of the axial shock near
the shock tube wall is an artifact due to the shadowing effect
of the shock tube wall in the transit of the signal through the
fiyer plate, and the axial shock is planar to the accuracy of
the measurement.

The time difference across the flasher gap from Fig.
determines the free surface flyer plate velocity, which is
shown in Fig. 10. The average free surface velocity of the
flyer plate over the hexane is Urg = 0.30 cm/usec. Behind
the shock transmitted to the flyer plate the particle velocity
is U, =1 Ugs = 0.15 cm/usec. This determines the shock
speed U, =0.68 cm/usec and the shock pressure
P, = 0.79 Mbar in the steel flyer plate. The incident hexane
shock strength is determined by the impedance match,
which results in the measured transmitted shock strength.
Using the available Hugoniot data'’ one obtains for the state
in the hexane behind the axial shock: U, = 0.49 cm/usec, U,

= 0.88 cm/usec, and P, = (.29 Mbar. Thus the axial shock
velocity is the same as the detonation velocity. The shock has
a Mach number of M = U, /c, =9.
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A duplicate phased implosion experiment with hexane
(E-4947) was diagnosed with an x-ray pulser. The radio-
graph is shown in Fig. 11. The picture at the bottom is before
the shot and at the top is after the detonation wave traveled
5.95 cm (7 diam) along the working portion of the shock
tube. It is clearly seen that the minimum nozzle radius is a
substantial fraction of the initial shock tube radius. This is an
indication of the high pressure behind the axial shock.

IV. NUMERICAL CALCULATIONS

Simulating the phased implosion experiments with nu-
merical calculations gives insight into the details of the fluid
flow that cannot be experimentally measured. Here we de-
scribe 2-D calculations performed with the CAVEAT code'”
for the experiment with the hexane working fluid. The nu-
merical results are compared with the experimental data. In
addition, the asymptotic flow for the 2-D calculations is
compared with that for the 1-D model in steady nozzle flow.

A. 2-D calculations

The CAVEAT calculations presented here use a finite dif-
ference algorithm on a quadrilateral mesh in cylindrical co-
ordinates; radius and axial distance. The initial configura-
tion for the 2-D calculation is shown in Fig. 12. CAVEAT
treats the material boundaries as Lagrangian interfaces of an
arbitrary Lagrangian—-Eulerian mesh. Mesh points on the
material interface can move tangentially to the interface to
accommodate changes in the interior mesh. The approxi-
mate effect is to treat the radial flow with a Lagrangian mesh
and the axial flow with an Eulerian mesh. This minimizes
numerical errors caused by the large shear along the wall-
fluid interface.

The HE is modeled with a JWL equation of state'* and
the detonation wave by a programmed burn. We note that
the CJ pressure is 370 kbar and the detonation velocity is
0.88 cm/usec. The steel wall and steel end plug are modeled
using the SESAME equation of state tables,'* material #4270.
The equation of state of n-hexane is approximated by a
Griineisen EOS,'” which is fit to data along the principal
shock Hugoniot. The Hugoniot data'' are well fit by a
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(b}
FIG. 11. Radiograph of the hexane phased implosion experiment. The
space scale on the left is a rod with T mm wide grooves | mm apart. (a)

dynamic. (b) static.

piecewise linear relationship between shock and particle ve-
locity. A phase transition (chemical decomposition) occurs
at approximately 200 kbar. indicated by a break in the data.
The phase transition is of importance because the nozzle
flow in the experiment crosses through this phase boundary.
The Griineisen coefficient is taken to be a piecewise linear
function in ¥. The hexane EOS is specified in more detail in
Appendix B.

A series of pressure contour plots of the working fluid
showing the formation of the axial shock is shown in Fig. 13.
The formation of the axial shock is affected by the presence
of the steel end plug, as can be seen in the contour plot at
1 =2.5pusec. By / = 3.5 usec the Mach configuration for the
formation of the axial shock is clearly visible. An expanded
view of this is shown in Fig. 14. At this stage the radial
shocks play an important role in setting the working fluid on
an adiabat with a high sound speed. This allows a compres-
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FIG. 12. Initial configuration for the CAVEAT calculation.

sive wave to overtake and interact with the Mach configura-
tion moving the triple point radially outward. By r =4.5
usec the Mach stem has grown in radial extent to become the
axial shock. At this time the flow behind the axial shock is
approximately uniform in the radial direction. The adiabat
of the working fluid is primarily set by the axial shock and
the weaker radial shocks are not significant. After this time
the flow is well described by the 1-D equations for flow in a

tw25us t=3.5pus

Axial Distance (cm)

0
Radial Distance (cm)

FIG. 13. Pressure contour plots showing the time evolution of flow in the
working fluid; 1= 2.5, 3.5, 4.5, and 5.5 usec. Contour levels are evenly
spaced with the heavy lines in multiples of 100 kbar. The steel wall and end
plug are shown as cross hatched.
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FIG. 14. Expanded view of the pressure contour plot at ¢ = 3.5 usec show-
ing the Mach configuration. Contour levels are evenly spaced with the
heavy lines in multiples of 100 kbar. The steel wall and end plug are shown
as cross hatched.

duct of variable and time-dependent cross-sectional area,
Eqgs. (6)-(8).

In this calculation, the formation of the Mach stem re-
sults from the interaction of the phased implosion with the
end plug and not the reflection of an oblique shock off the
axis, as described in Sec. IT A. This indicates that though the
details may vary with the setup, the formation of an axial
shock is not sensitive to initial conditions. However, the ex-
perimental details of the start-up are important to efficiently
form an axial shock in a short distance.

The flow in the HE approaches an equilibrium configu-
ration after the axial shock has formed and stabilized. A
pressure contour plot at = 9 usec is shown in Fig. 15. Be-
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FIG. 15. Pressure contours at a time when the axial shock reaches the end of
the shock tube, 7 = 9 usec. Contour levels are evenly spaced with the heavy
lines in multiples of 100 kbar, The steel wall and end plug are shown as cross
hatched.
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hind the detonation wave the outer surface of the HE has
blown outward and a rarefaction wave propagates inward to
the shock tube. The HE is thick enough for most of the effect
from the outer boundary to occur behind the nozzle throat
where it cannot affect the propagation of the axial shock. At
the interface between the HE and the shock tube, the inward
motion of the tube wall couples to the flow behind the deton-
ation wave. This affects the pressure at the interface, which
plays the role of the applied pressure pulse for the analysis in
Sec. I1. We also note that the phase velocity of the pressure
pulse is the velocity of the detonation wave in the HE.

B. Comparison with experiment

At the time of the radiograph for the hexane phased
implosion experiment the detonation wave has traveled 6 cm
from the plug at the start of the tube. The shape of the nozzle
from the experiment and the calculation are in good agree-
ment, as seen in Fig. 16, in which the digitized position of the
wall from the radiograph (Fig. 11) is plotted together with
the interface from the numerical calculation. The difference
is probably due to uncertainties in the equations of state, and
shear or strength properties in the metal wall (which is mod-
eled as a fluid) as the pressure behind the detonation wave
falls off.

A pressure contour plot at a time when the axial shock is
close to the experimental end of the shock tube (~5.9 cm
from the start of the plug) is shown in Fig. 15. This is to be
compared with the data from the reflection change tech-
nigue shown in Fig. 9. In both cases we see the axial shock is
planar and is propagating slightly behind the detonation
wave. The agreement is within the resolution of the calcula-
tion and the accuracy of the experimental measurements.

C. Comparison with steady-state solution _
The calculations show that the flow in th: nozzle is ap-

proaching, but has not reached, steady state by the end of the

experiment. The calculations were continued for about twice
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F1G. 16. Comparison of the nozzle shapes from experiment and calculation.
Note, the scale is r: z = 1:10.
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the distance or until the axial shock had traveled 12 cm to
allow a steady-state flow to be reached. The longer run used
acoarser mesh with halfthe resolution. In the region of over-
lap the two calculations agreed well, indicating that the solu-
tion converged under mesh refinement. At 12 cm of run, we
see in Fig. 17 that the converging section of the nozzle is
about 2 cm long and that there is little radial dependence of
the pressure within the nozzle. Behind the nozzle throat, the
shock tube wall blows outward as the pressure behind the
detonation falls off due to the Taylor wave and rarefaction
from the outer boundary. In Fig. 18 the shape of the tube
wall is shown relative to the detonation front at a sequence of
times. This shows that the nozzle has converged to a steady-
state shape 1 = 15 usec. Also, at the time of the radiograph,
t = 9 usec, the shape of the nozzle has not reached steady
state.

To compare with the steady-state theory, we solved the
nozzle flow equations described in Sec. II B. We used the
pressure profile along the HE/wall interface determined
from the 2-D numerical simulation for the applied pressure
pulse P, of the 1-D model equations. As seen in Fig. 19, the
pressure profile relative to the detonation front has con-
verged to a time-independent profile 13(, by 1 = 15 usec. At
steady state, the axial shock moves with the detonation ve-
locity.

The hexane isentrope in the P-V plane through the
shock state is shown in Fig. 20. We note that the discontin-
uous derivative corresponds to a phase transition. The mag-
nitude of the jump of the slope depends on the Griineisen
coefficient in the EOS. Since there are no data for the Griin-
eisen coefficient in this regime of state space our choice leads
to some uncertainty in the isentrope. Given the isentrope,
the algebraic equations for the steady nozzle flow are easily
solved.

The pressure in the nozzle as a function of cross-section-
al area is shown in Fig. 21. If the jump in sound speed at the
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FI1G. 17. Pressure contours when the flow reaches steady state. 7 = 14 usec.
Contour levels are evenly spaced with the heavy lines in multiples of 100
kbar. The steel wall and end plug are shown as cross hatched.
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FIG. 18. The time sequence of nozzle shapes.

phase transition were large enough to cause the flow to
change from subsonic to supersonic, then a second shock in
the nozzle would be necessary for steady state. This does not
occur for our choice of the Griineisen coefficient used in the
EOS.

We numerically solved the 1-D model for steady state,
Egs. (9) and (10), varying the shock position until the sonic
boundary condition at the throat was achieved. Uncertain-
ties in the equation of state drop out in a comparison to the 2-
D calculation since the same equation of state is used in both
cases. Moreover, the axial position is measured relative to
the applied pressure pulse that is common to both calcula-
tions.

Figures 22 and 23 show the comparison between the 1-D
steady-state and the 2-D asymptotic solution for the pres-
sure profiles and nozzle shapes, respectively. We observe an
excellent agreement in the pressure profiles. Both profiles
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FIG. 19. The time sequence of applied pressure profiles.
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show a phase transition approximately 1 cm behind the
shock front. The shock fronts are at the same position, but as
expected, the shock is smeared out in the 2-D calculation. As
can be seen from Fig. 23, the inside of the 2-D wall initially
moves outward just as the mass layer does in the 1-D model.
The agreement between the two shapes is within a small frac-
tion of the total wall thickness. In both cases, the length of
the nozzle ahead of the sonic point is approximately 2 cm.
This confirms that the 1-D model accurately describes the
steady state of the axially phased channel implosion and
shows that the approximations made are indeed justified.

V. DISCUSSION AND CONCLUSION

We have shown that an axially phased implosion of a
channel can generate, propagate, and maintain a strong
planar shock in a working fluid at higher pressures than a
standard shock tube. The steady-state flow in the channel
has several properties of practical and theoretical interest.
Most importantly, theoretical considerations and numerical
calculations indicate that a steady flow is reached for a wide
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FIG. 21. Hexane pressure for steady nozzle flow.
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range of starting conditions and is stable. Moreover, the flow
is not very sensitive to the cross-sectional shape of the chan-
nel. :

The region behind the onset of the phased implosion
forms a nozzle. The nozzle flow is well characterized: uni-
form across the channel, simple and predictable in the axial
direction. The flow behind the nozzle throat has no effect on
the shape of the converging section of the nozzle and the flow
inside it.

These properties form the basis of an alternative shock
tube design that is not limited in pressure by material
strength of the tube wall. With high explosives driving the
phased implosion, a super shock tube capable of reaching
high pressures and energy densities is feasible. Experimen-
tally we have demonstrated the possibilities of this approach
with a simple design. Here the velocity of the phased implo-
sion is equal to the detonation velocity of the explosive. As

_pointed out in Ref. 1 the velocity of the phased implosion can
be made to exceed the detonation velocity. Rather than be-
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FI1G. 23. Comparison of steady-state nozzle shape with the 2-D calculation.
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ing limited by the detonation velocity the super shock tube is
limited by the energy density and pressure of the high explo-
sive.

The super shock tube extends to higher pressures and
temperatures conventional shock tube applications of study-
ing fluid flows and material properties. The design of the
super shock tube with the shape of the nozzle as a new dy-
namical variable makes possible a new technique for extract-
ing information on material properties and fluid flow. For
steady-state flow, the shape of the nozzle determines the
pressure difference across the tube wall. With a well charac-
terized driving system this can be used to determine the
equation of state of the working fluid along an isentrope be-
hind the axial shock. The region of phase space that can be
explored in this way is particularly relevant for the detona-
tion products of high explosives.

The potential for high accuracy of super shock tube
measurements is based on the fact that the pressure of the
working fluid can be measured relative to the driver pressure
or vice versa for calibration purposes. Calibration will in-
volve experimental, theoretical, and numerical efforts to re-
fine, for example, the equations of state of the driver detona-
tion products and to capture quantitatively the deviations of
the nozzle flow from its simple one-dimensional approxima-
tion. Frictional drag of the working fluid with the wall, pri-
marily due to a turbulent boundary layer, affects the precise
shape of the nozzle. However, any perturbation requires
time to develop and usually will be swept out the back of the
nozzle before it can develop to a size that significantly
changes the nozzle flow. Comparison of experiments with
different nozzle lengths or different cross-sectional areas
may be used to study the growth of boundary layers and
turbulent perturbations. The nozzle length may be varied by
adjusting the wall mass per length of the shock tube.

In summary the super shock tube has the potential to
develop into a tool to measure equations of state, address the
dynamics of turbulent mixing and other hydrodynamical
phenomena. The super shock tube is particularly well suited
to the range of phase space, which is of interest in detonation
phenomena.

Another application of an axially phased implosion of
a shock tube is to benchmark hydrodynamic codes. Several
features of the shock tube flow are well suited for testing
hydrodynamics codes. The formation of the axial shock is a
nontrivial two-dimensional flow. The flow evolves in time to
a well characterized steady-state solution, which, even for
nontrivial equations of state, may be accurately determined
by solving ordinary differential equations. This is remark-
able considering that the radial motion of the wall is an im-
portant dynamical degree of freedom and therefore makes
the solution two dimensional. Moreover, we have shown
that analytic solutions may be constructed. An accurate nu-
merical calculation of the axial shock propagation depends
on the proper treatment of the fluid~wall interface and in
particular the strong shear layer. In addition, the gradient
behind the axial shock makes the shock Hugoniot jump con-
ditions sensitive to artificial numerical smearing of the
shock. Since the flow inside the tube is sensitive to small
differences between the shock velocity and the phase veloc-
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ity, small numerical errors show up in the shape of the tube
wall, the position of the axial shock relative to the onset of
the applied pressure, and the axial profile of the flow behind
the shock. These features of the flow can be used to discrimi-
nate among different numerical algorithms. Finally, the cal-
culations can be validated by comparison with simple experi-
ments such as described in this paper.

In addition to the potential applications, the channel
flow of an axially phased implosion is of theoretical interest.
Our experiments and calculations indicate that the steady-
state flow is a stable attractor of the hydrodynamic equations
with a large basin of attraction characterized by the initial
and boundary conditions. We have given theoretical argu-
ments to support this conjecture.

There is a strong similarity between the 1-D model
equations for the axially phased implosion and the 1-D equa-
tions for reactive hydrodynamics with a single irreversible
reaction. This leads to a striking similarity between their
asymptotic solutions in the underdriven case; steady-state
nozzle flow and CJ detonation wave. A detonation wave
consists of a shock followed by a reaction zone, see e.g., Ref.
16. In the underdriven case, the reaction zone ends at a sonic
point decoupling the reaction zone from the flow behind it.
This is analogous to the nozzle region ahead of the throat for
the phased implosion. In both cases energy is supplied to the
fluid in the region behind the shock; the energy release by the
chemical reaction corresponds to the energy suppiied by the
implosion, and the detonation velocity corresponds to the
phase velocity. Also, the formation of the axial shock in the
1-D model, i.e., neglecting radial waves, is similar to a shock
to detonation transition."” For detonation waves as well as
the phased implosions, the hydrodynamical equations are
coupled to one external degree of freedom, which satisfies an
additional dynamical equation. For the detonation wave it is
the burn fraction and for the axially phased implosion it is
the cross-sectional area of the channel. This analogy may
serve to carry over insights from one system to the other. For
example, it is known that detonation waves are insensitive to
the details of initiation and usually are stable attractors.
However, for some parameters the steady detonation waves
becomes unstable leading to a galloping detonation wave
that oscillates about the steady-state solution.'*?' This sug-
gests the possibility of a “chugging” mode of the nozzle flow.

The parameter range for the axially phased implosion
we have investigated is that in which the energy supplied by
the driver can be matched to the energy required to drive the
axial shock. Other parameter ranges are also of interest. Ap-
plications for the overdriven case, with a large excess of ener-
gy supplied, were discussed in Refs. 1 and 2. The under-
driven case, in which the energy supplied is insufficient to
drive an axial shock with the full cross-sectional area of the
channel, is also important. The use of an optical fiber as a
timing pin or pressure transducer, as discussed in Ref. 22, is
an example. In this case the fiber is the channel and a shock
in the surrounding medium is the source of the applied pres-
sure pulse. When the density of the medium is lower than
that of the fiber the axial shock is pressure limited and rides
far back in the nozzle and two-dimensional effects invalidate
our simple model. Thus it is of interest to extend our analysis
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of the axially phased implosion to the overdriven and under-
driven cases.

In summary, we have developed the theory for the
steady-state flow of a supersonically phased channel implo-
sion in the energy balanced regime. The theory predicts a
stable planar axial shock followed by an isentropic nozzle
flow. The theoretical predictions have been corroborated by
a simple experiment. Numerical calculations show the for-
mation of the axial shock during start-up and agree with
experimental results and theory. Numerical simulations also
show how the steady state is approached. A potentially im-
portant application of the axially phased implosion is the
design of a super shock tube.
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APPENDIX A: EXISTENCE AND UNIQUENESS OF
STEADY-STATE SOLUTION

In this appendix we analyze the 1-D model Egs. (9) and
(10) for the steady-state shape of the nozzle using the sonic
boundary condition at the nozzle exit. We prove that a solu-

~ tion exists and that it is unique. The proof is based on the

energy balance between the external energy supplied by the
applied pressure pulse and the energy needed to drive the
axial shock followed by the steady-state nozzle flow. We
show that, as functions of the position of the axial shock
relative to the nozzle entrance, the energy supplied is mono-
tonically decreasing and the energy needed is monotonically
increasing. Hence these two functions have exactly one in-
tersection, which uniquely determines the shock position for
the steady-state solution.

We assume 1~’” (1) is O for 1 <0, rises discontinuously at
t = 0 and is monotonically decreasing for 7 > 0. In addition,
we need to assume that i’u (1) falls off sufficiently fast. This
additional condition is clarified below. For Eq. (10), the
onset of the applied pressure pulseis at z = 0. Thus the shock
is at the nozzle entrance and ahead of the onset of the applied
pressure pulse if z, > 0, and the shock is inside the nozzle and
behind the onset if z, <0. We note that P, ( — z/v,) de-
creases as z moves back into the nozzle, and that forz < z,,
dP/dR> 0.

Equations (9) and (10) may be integrated backward
into the nozzle, starting at the nozzle entrance, z, = 0 if
z,<0orz, =z, ifz, > 0, with initial data R = R,and U = 0.
The integration is to be terminated at the first point z, <0
where either Ux0 (outward motion) and dU/dz<0
(outward acceleration), or where the critical radius for noz-
zle flow is reached and P, becomes ill defined. The problem
is to determine z, such that the minimum R corresponds to
the critical radius.

We start with two simple properties of the solution to
Egs. (9) and (10) for a fixed z_. The first lemma guarantees
that the termination point of the integration is always
reached.
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Lemma I: For a given shock position z_, the solution to
Egs. (9) and (10) for the shape of the wail R(z) either ex-
tends to the critical radius R, or has one local minimum of
R, or is monotonically increasing.

Proof: 1f z, > O then either R is monotonically increasing
or has a local maximum for z < 0. A minimum of R > R, for
z<Qoccurswhen U = Oand dU /dt > 0. Then from Eq. (10)
we have, P(z) > i’u ( —z/v,). As z decreases away from the
minimum, P %" increases and 7", decreases. Therefore, after
the minimum, dU /dt and hence U remain positive, and R
continues to increase.

From now on, we neglect the physically uninteresting
case when the shock is ahead of and overwhelms the applied
pressure pulse to the extent that R never gets less than R,
Then, the termination point of the integration corresponds
either to a local minimum in radius or the critical radius. We
denote quantities at the termination point by the subscript 1.
The next lemma gives the critical equation used to determine
the energy balance.

Lemma 2: The solution to Egs. (9) and (10) satisfies

Ay
oU? :f (P, — Py)dA. (A1)
A

[N

Proof: The result follows from multiplying Eq. (10) by
U, integrating from z, to z, and then substituting with Eq.
(19).

The problem is to determine z, such that U{z,) = 0 and
R(z,) is the critical radius. This requires a balance between
the energy needed to drive the steady-state flow in the noz-
zle,

A,
f P, dA,
A,

where A4, is the area of the shock front and 4, is the area at
the sonic point, and the external energy supplied

A0} .
f P, dA,

A

where 4(0) is the area at the onset of 2, and at A, isthe area
minimum R.

The next proposition shows that the energy needed is a
monotonically increasing function of the shock position.

Proposition 1. The energy needed to drive the steady-
state flow in the nozzle decreases as z, decreases.

Proof: Since P, is a function of the area ratio we have

A, 1
J Podd =4, f P, (—’-4->d (-A—)
4, 4,4, A, A,

The integral on the right-hand side of the equation depends
only on the nozzle solution and is independent of z,. There-
fore the energy needed is proportional to 4, and decreases as
the shock falls back into the nozzle.

The next two propositions show that the external energy
supplied is a monotonically decreasing function of the shock
position.

Proposition 2: If the shock is inside the nozzle, z, <0,
then the external energy supplied increases as z, decreases.

Lemma 3: Consider two solutions of Egs. (9) and (10),
denoted by subscripts 1 and 2, respectively, with the shock at

(A2)
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z, =2z and z, =z,. If z, <z, <0 then R,(z) <R,(z) for
z<z,.

_Proof of Lemma 3: When the shock is behind the onset
of P,, it follows from the ordinary differential equations
(ODE’s) that U(z) <0 for z> z,. The two solutions are the
same for z>z,. Between the two shocks U, < U,. Hence
R, <R, at z = z,. For z < z,, suppose that the two solutions
for R first intersect at the point z, and R(z,) = R,. The
geometry implies U, < U, at z = z_. We show that this leads
to a contradiction. Consider z as a function of R for the two
solutions. It follows that z, (R) <z,(R) for R > R,. Since P,
is monotonic we have

Ry .
f [PZ(R)—-P](R)]Ra'R>O, (A3)

R»
where ?’(R) = i’u( — z{R)/v,). Therefore the external en-
ergy supplied from the nozzle entrance to z = z, is greater
for the second solution than for the first. Furthermore, the
energy needed is greater for the first solution than for the
second,

afl k)

N

!
S A, f P, (.A_)d (_A_.)
A4/, A, A,

It now follows from Lemma 2 that U, < U, atz = z.. Thisisa
contradiction. Hence the two solutions cannot cross for
z <z, and R, remains below R .

Proof of Proposition 2: Consider the two solutions occur-
ring in the lemma. Using R, <R, the monotonicity of P,
and Eq. (A1) an argument similar to the one in the above
lemma can be used to show that

(A4)

Ry Ry
J P,(R)RdR>| P,(R)RdR.

R, . R,

(A5)

This implies the external energy increases as z, decreases.

Proposition 3. 1f the shock is ahead of the onset of }3“
then the external energy supplied increases as z, decreases.

Lemma 4: Consider two solutions of Egs. (9) and (10),
denoted by subscripts I and 2, respectively, with the shock at
z, =z and z, = z;. If 0 <z, <z, then R.(z) <R,(z) for
z<z,. :

Proof of Lemma 4: 1t is trivial to show that R, > R, and
U,> U, at z = z,. It follows from the ODE’s and the mono-
tonicity of P, with R that P, > P,and dU,/dz < dU,/dz con-
tinue to hold for z < z,.

Proof'of Proposition 3: Consider the two solutions occur-
ring in the lemma. There are two cases. In the first, U,(z,,)

= (. From the previous lemma it follows that U,(z,,) <0
and hencez,, <z,,. Using Egs. (A1) and (A2) and R(z,, ),
it is easy to show that the energy supplied by P, is greater for
the second solution than for the first. In the second case,
both solutions end at the critical radius. It follows from
Lemmad4thatz, , <z,,,and U, < U atz = z,,. Wenow need
an assumption on the applied pressure pulse. Namely, f’u
falls off sufficiently fast such that P, > P, as R approaches
the critical radius. By increasing o, the time scale for the
implosion increases and the condition on the falloff can al-
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ways be met, provided that P, (t)—P, as t— . The as-
sumption implies that the wall accelerates outward asz—z,.
It then follows that 0> U,(z,,) > U,(z,,) > U,(z,,). Be-
cause the nozzle energy is the same for both solutions,
Lemma 2 implies in this case that the energy supplied is
linearly dependent on U °. Hence the energy supplied by T’u is
again greater for the second solution than for the first.
Therefore the external energy supplied is an increasing func-
tion of z,.

Theorem: There exists a unique z, such that the solution
of Egs. (9) and (10) at the nozzle throat is sonic.

Proof: Consider the two limiting cases. When the shock
is far back in the nozzle, for the solution of the ODE’s, the
energy supplied is a positive constant and the energy needed
approaches 0. Hence the energy supplied is greater than the
energy needed. For the shock far ahead of the onset of P, , the
energy needed is a positive constant and the energy supplied
becomes negative when the internal pressure overwhelms
the applied pressure and blows out the wall. Hence the ener-
gy needed is greater than the energy supplied. By continuity,
for some z, the two energies are balanced. Lemma 2 implies
U = 0 at z = z, and the solution satisfies the sonic boundary
condition. Because the energy supplied is monotonically de-
creasing with z, and the energy needed is monotonically in-
creasing with z_, there is only one energy balanced solution.

APPENDIX B: EQUATION OF STATE FOR NUMERICAL
CALCULATIONS

In this section we specify the equations of state used in
the numerical calculation for n-hexane and PBX-9501. For
both materials we use a Griineisen form of the EOS,

PWVEy=P (V) +(I/WME—-E(N]. (B1)
Following Ref. 15, for the hexane, the experimental data
for the principal shock Hugoniot is used as the reference
curve. The shock Hugoniot can easily be specified by the
coefficients for a linear fit of the shock velocity as a function

of the particle velocity,
u, = C+ Su,. (B2)

The shock jump condition for mass conservation gives

u,(Vy=C(1—=V/V)/[1-S(1—=V/V;)]. (B3)
From the other shock jump conditions we obtain
Pll(V):P() +p(?upu,\5 (B4)

E, (V) =E, +'§(P<> + Py )V, — V).

The experimental shock data'’ indicate a phase transi-
tion and the shock velocity may be expressed as a piecewise
linear fit in the particle velocity. For lack of experimental
data we also use a piecewise linear function for the Griinei-
sen coeflicient. This is a slight modification of the form of the
EOS for solids described in Ref. 23, Appendix C Sec. 4.A.1.
The fit we use is in three parts.

(1) For the first phase, V, = 0.737<V<V,=1.522
cm’/g,

C=0.1579 cm/usec and S=1.534,
(V) =10x(V/V,).
(2) In the mixed region, V, = 0.689< V<V, = 0.737
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TABLE L. EOS coefficients for PBX-9501.

4 =852
B =0.1802
C=0.01207
R, =455
Ry=1.30
I'=0.38

cm?/g, P, E..., and T (V) vary linearly between their val-
ues at the transition points ¥, and ¥V, of the pure phases.
(3) For the second phase, 0.637< V<V, = 0.689 cm*/g,

C=0.0993 cm/usec and 5= 1.588,
F(V) =0722x(V/V,).

The function I' (V) is chosen to give reasonable values
for the sound speed near the shock Hugoniot. This defines
the EOS in the region of interest for the nozzle flow in the
phased implosion experiment.

For the HE, an isentrope through the CJ state of
the detonation products, V., =040cm’/g and P,
= 0.37 Mbar, is used as the reference curve. We use a JWL
equation to describe the isentrope'’

P(V)=4A ( R‘V)
(V) =Aexp| ———
Vs

B ( REV)+C(K>)F*‘ (BS)
exp| — —— e ;
T %

A R, B R,
E\.(V)zl—-—-exp(————l/>+ exp(»— V)

Rl I/() RZ V'()

c(Vo)
2 (5 ] (B6)

With units of Mbar, Mbar cm’/g, and cm*/gfor P, E, and V,
respectively, the coefficients for PBX-9501 fit to cylindrical
test data from Table 8-7 of Ref. 24, are given in Table 1. The
initial state is given by p, = 1.84 g/cm?, P, = 0. The pro-
grammed burn uses a detonation velocity, D =0.88
cm/usec.
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